Copied to
clipboard

G = C42.151D10order 320 = 26·5

151st non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.151D10, C10.292- 1+4, C42.C27D5, C4⋊C4.112D10, D10⋊Q836C2, C42⋊D537C2, (C2×C20).89C23, D10.38(C4○D4), Dic53Q836C2, D208C4.12C2, (C2×C10).237C24, (C4×C20).240C22, Dic5.46(C4○D4), Dic5.Q834C2, D10.13D4.2C2, (C2×D20).171C22, C4⋊Dic5.242C22, C22.258(C23×D5), C59(C22.46C24), (C4×Dic5).235C22, (C2×Dic5).269C23, C10.D4.53C22, (C22×D5).232C23, D10⋊C4.137C22, C2.30(Q8.10D10), (C2×Dic10).187C22, (D5×C4⋊C4)⋊37C2, C2.88(D5×C4○D4), C4⋊C47D536C2, C4⋊C4⋊D535C2, C10.199(C2×C4○D4), (C5×C42.C2)⋊10C2, (C2×C4×D5).136C22, (C5×C4⋊C4).192C22, (C2×C4).204(C22×D5), SmallGroup(320,1365)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.151D10
C1C5C10C2×C10C22×D5C2×C4×D5C42⋊D5 — C42.151D10
C5C2×C10 — C42.151D10
C1C22C42.C2

Generators and relations for C42.151D10
 G = < a,b,c,d | a4=b4=1, c10=d2=a2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b, bd=db, dcd-1=c9 >

Subgroups: 710 in 214 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic5, Dic5, C20, D10, D10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22⋊Q8, C22.D4, C42.C2, C42.C2, C422C2, Dic10, C4×D5, D20, C2×Dic5, C2×C20, C22×D5, C22.46C24, C4×Dic5, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, C42⋊D5, Dic53Q8, Dic5.Q8, D5×C4⋊C4, C4⋊C47D5, D208C4, D10.13D4, D10⋊Q8, C4⋊C4⋊D5, C5×C42.C2, C42.151D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.46C24, C23×D5, Q8.10D10, D5×C4○D4, C42.151D10

Smallest permutation representation of C42.151D10
On 160 points
Generators in S160
(1 106 11 116)(2 71 12 61)(3 108 13 118)(4 73 14 63)(5 110 15 120)(6 75 16 65)(7 112 17 102)(8 77 18 67)(9 114 19 104)(10 79 20 69)(21 86 31 96)(22 131 32 121)(23 88 33 98)(24 133 34 123)(25 90 35 100)(26 135 36 125)(27 92 37 82)(28 137 38 127)(29 94 39 84)(30 139 40 129)(41 64 51 74)(42 101 52 111)(43 66 53 76)(44 103 54 113)(45 68 55 78)(46 105 56 115)(47 70 57 80)(48 107 58 117)(49 72 59 62)(50 109 60 119)(81 153 91 143)(83 155 93 145)(85 157 95 147)(87 159 97 149)(89 141 99 151)(122 150 132 160)(124 152 134 142)(126 154 136 144)(128 156 138 146)(130 158 140 148)
(1 35 47 142)(2 26 48 153)(3 37 49 144)(4 28 50 155)(5 39 51 146)(6 30 52 157)(7 21 53 148)(8 32 54 159)(9 23 55 150)(10 34 56 141)(11 25 57 152)(12 36 58 143)(13 27 59 154)(14 38 60 145)(15 29 41 156)(16 40 42 147)(17 31 43 158)(18 22 44 149)(19 33 45 160)(20 24 46 151)(61 125 117 81)(62 136 118 92)(63 127 119 83)(64 138 120 94)(65 129 101 85)(66 140 102 96)(67 131 103 87)(68 122 104 98)(69 133 105 89)(70 124 106 100)(71 135 107 91)(72 126 108 82)(73 137 109 93)(74 128 110 84)(75 139 111 95)(76 130 112 86)(77 121 113 97)(78 132 114 88)(79 123 115 99)(80 134 116 90)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 84 11 94)(2 93 12 83)(3 82 13 92)(4 91 14 81)(5 100 15 90)(6 89 16 99)(7 98 17 88)(8 87 18 97)(9 96 19 86)(10 85 20 95)(21 68 31 78)(22 77 32 67)(23 66 33 76)(24 75 34 65)(25 64 35 74)(26 73 36 63)(27 62 37 72)(28 71 38 61)(29 80 39 70)(30 69 40 79)(41 134 51 124)(42 123 52 133)(43 132 53 122)(44 121 54 131)(45 130 55 140)(46 139 56 129)(47 128 57 138)(48 137 58 127)(49 126 59 136)(50 135 60 125)(101 151 111 141)(102 160 112 150)(103 149 113 159)(104 158 114 148)(105 147 115 157)(106 156 116 146)(107 145 117 155)(108 154 118 144)(109 143 119 153)(110 152 120 142)

G:=sub<Sym(160)| (1,106,11,116)(2,71,12,61)(3,108,13,118)(4,73,14,63)(5,110,15,120)(6,75,16,65)(7,112,17,102)(8,77,18,67)(9,114,19,104)(10,79,20,69)(21,86,31,96)(22,131,32,121)(23,88,33,98)(24,133,34,123)(25,90,35,100)(26,135,36,125)(27,92,37,82)(28,137,38,127)(29,94,39,84)(30,139,40,129)(41,64,51,74)(42,101,52,111)(43,66,53,76)(44,103,54,113)(45,68,55,78)(46,105,56,115)(47,70,57,80)(48,107,58,117)(49,72,59,62)(50,109,60,119)(81,153,91,143)(83,155,93,145)(85,157,95,147)(87,159,97,149)(89,141,99,151)(122,150,132,160)(124,152,134,142)(126,154,136,144)(128,156,138,146)(130,158,140,148), (1,35,47,142)(2,26,48,153)(3,37,49,144)(4,28,50,155)(5,39,51,146)(6,30,52,157)(7,21,53,148)(8,32,54,159)(9,23,55,150)(10,34,56,141)(11,25,57,152)(12,36,58,143)(13,27,59,154)(14,38,60,145)(15,29,41,156)(16,40,42,147)(17,31,43,158)(18,22,44,149)(19,33,45,160)(20,24,46,151)(61,125,117,81)(62,136,118,92)(63,127,119,83)(64,138,120,94)(65,129,101,85)(66,140,102,96)(67,131,103,87)(68,122,104,98)(69,133,105,89)(70,124,106,100)(71,135,107,91)(72,126,108,82)(73,137,109,93)(74,128,110,84)(75,139,111,95)(76,130,112,86)(77,121,113,97)(78,132,114,88)(79,123,115,99)(80,134,116,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,84,11,94)(2,93,12,83)(3,82,13,92)(4,91,14,81)(5,100,15,90)(6,89,16,99)(7,98,17,88)(8,87,18,97)(9,96,19,86)(10,85,20,95)(21,68,31,78)(22,77,32,67)(23,66,33,76)(24,75,34,65)(25,64,35,74)(26,73,36,63)(27,62,37,72)(28,71,38,61)(29,80,39,70)(30,69,40,79)(41,134,51,124)(42,123,52,133)(43,132,53,122)(44,121,54,131)(45,130,55,140)(46,139,56,129)(47,128,57,138)(48,137,58,127)(49,126,59,136)(50,135,60,125)(101,151,111,141)(102,160,112,150)(103,149,113,159)(104,158,114,148)(105,147,115,157)(106,156,116,146)(107,145,117,155)(108,154,118,144)(109,143,119,153)(110,152,120,142)>;

G:=Group( (1,106,11,116)(2,71,12,61)(3,108,13,118)(4,73,14,63)(5,110,15,120)(6,75,16,65)(7,112,17,102)(8,77,18,67)(9,114,19,104)(10,79,20,69)(21,86,31,96)(22,131,32,121)(23,88,33,98)(24,133,34,123)(25,90,35,100)(26,135,36,125)(27,92,37,82)(28,137,38,127)(29,94,39,84)(30,139,40,129)(41,64,51,74)(42,101,52,111)(43,66,53,76)(44,103,54,113)(45,68,55,78)(46,105,56,115)(47,70,57,80)(48,107,58,117)(49,72,59,62)(50,109,60,119)(81,153,91,143)(83,155,93,145)(85,157,95,147)(87,159,97,149)(89,141,99,151)(122,150,132,160)(124,152,134,142)(126,154,136,144)(128,156,138,146)(130,158,140,148), (1,35,47,142)(2,26,48,153)(3,37,49,144)(4,28,50,155)(5,39,51,146)(6,30,52,157)(7,21,53,148)(8,32,54,159)(9,23,55,150)(10,34,56,141)(11,25,57,152)(12,36,58,143)(13,27,59,154)(14,38,60,145)(15,29,41,156)(16,40,42,147)(17,31,43,158)(18,22,44,149)(19,33,45,160)(20,24,46,151)(61,125,117,81)(62,136,118,92)(63,127,119,83)(64,138,120,94)(65,129,101,85)(66,140,102,96)(67,131,103,87)(68,122,104,98)(69,133,105,89)(70,124,106,100)(71,135,107,91)(72,126,108,82)(73,137,109,93)(74,128,110,84)(75,139,111,95)(76,130,112,86)(77,121,113,97)(78,132,114,88)(79,123,115,99)(80,134,116,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,84,11,94)(2,93,12,83)(3,82,13,92)(4,91,14,81)(5,100,15,90)(6,89,16,99)(7,98,17,88)(8,87,18,97)(9,96,19,86)(10,85,20,95)(21,68,31,78)(22,77,32,67)(23,66,33,76)(24,75,34,65)(25,64,35,74)(26,73,36,63)(27,62,37,72)(28,71,38,61)(29,80,39,70)(30,69,40,79)(41,134,51,124)(42,123,52,133)(43,132,53,122)(44,121,54,131)(45,130,55,140)(46,139,56,129)(47,128,57,138)(48,137,58,127)(49,126,59,136)(50,135,60,125)(101,151,111,141)(102,160,112,150)(103,149,113,159)(104,158,114,148)(105,147,115,157)(106,156,116,146)(107,145,117,155)(108,154,118,144)(109,143,119,153)(110,152,120,142) );

G=PermutationGroup([[(1,106,11,116),(2,71,12,61),(3,108,13,118),(4,73,14,63),(5,110,15,120),(6,75,16,65),(7,112,17,102),(8,77,18,67),(9,114,19,104),(10,79,20,69),(21,86,31,96),(22,131,32,121),(23,88,33,98),(24,133,34,123),(25,90,35,100),(26,135,36,125),(27,92,37,82),(28,137,38,127),(29,94,39,84),(30,139,40,129),(41,64,51,74),(42,101,52,111),(43,66,53,76),(44,103,54,113),(45,68,55,78),(46,105,56,115),(47,70,57,80),(48,107,58,117),(49,72,59,62),(50,109,60,119),(81,153,91,143),(83,155,93,145),(85,157,95,147),(87,159,97,149),(89,141,99,151),(122,150,132,160),(124,152,134,142),(126,154,136,144),(128,156,138,146),(130,158,140,148)], [(1,35,47,142),(2,26,48,153),(3,37,49,144),(4,28,50,155),(5,39,51,146),(6,30,52,157),(7,21,53,148),(8,32,54,159),(9,23,55,150),(10,34,56,141),(11,25,57,152),(12,36,58,143),(13,27,59,154),(14,38,60,145),(15,29,41,156),(16,40,42,147),(17,31,43,158),(18,22,44,149),(19,33,45,160),(20,24,46,151),(61,125,117,81),(62,136,118,92),(63,127,119,83),(64,138,120,94),(65,129,101,85),(66,140,102,96),(67,131,103,87),(68,122,104,98),(69,133,105,89),(70,124,106,100),(71,135,107,91),(72,126,108,82),(73,137,109,93),(74,128,110,84),(75,139,111,95),(76,130,112,86),(77,121,113,97),(78,132,114,88),(79,123,115,99),(80,134,116,90)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,84,11,94),(2,93,12,83),(3,82,13,92),(4,91,14,81),(5,100,15,90),(6,89,16,99),(7,98,17,88),(8,87,18,97),(9,96,19,86),(10,85,20,95),(21,68,31,78),(22,77,32,67),(23,66,33,76),(24,75,34,65),(25,64,35,74),(26,73,36,63),(27,62,37,72),(28,71,38,61),(29,80,39,70),(30,69,40,79),(41,134,51,124),(42,123,52,133),(43,132,53,122),(44,121,54,131),(45,130,55,140),(46,139,56,129),(47,128,57,138),(48,137,58,127),(49,126,59,136),(50,135,60,125),(101,151,111,141),(102,160,112,150),(103,149,113,159),(104,158,114,148),(105,147,115,157),(106,156,116,146),(107,145,117,155),(108,154,118,144),(109,143,119,153),(110,152,120,142)]])

53 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E···4I4J···4O4P4Q4R5A5B10A···10F20A···20L20M···20T
order122222244444···44···44445510···1020···2020···20
size111110102022224···410···10202020222···24···48···8

53 irreducible representations

dim1111111111122222444
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D102- 1+4Q8.10D10D5×C4○D4
kernelC42.151D10C42⋊D5Dic53Q8Dic5.Q8D5×C4⋊C4C4⋊C47D5D208C4D10.13D4D10⋊Q8C4⋊C4⋊D5C5×C42.C2C42.C2Dic5D10C42C4⋊C4C10C2C2
# reps12121112221244212148

Matrix representation of C42.151D10 in GL6(𝔽41)

100000
010000
009000
000900
0000032
000090
,
100000
010000
0040000
000100
000090
000009
,
1340000
7340000
0004000
001000
000001
000010
,
4000000
3410000
0032000
0003200
0000040
0000400

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,9,0,0,0,0,32,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[1,7,0,0,0,0,34,34,0,0,0,0,0,0,0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[40,34,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;

C42.151D10 in GAP, Magma, Sage, TeX

C_4^2._{151}D_{10}
% in TeX

G:=Group("C4^2.151D10");
// GroupNames label

G:=SmallGroup(320,1365);
// by ID

G=gap.SmallGroup(320,1365);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,100,346,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b,b*d=d*b,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽